1,340 research outputs found

    The research on site selection of dry port cluster of Ningbo Port

    Get PDF

    High brightness fully coherent X-ray amplifier seeded by a free-electron laser oscillator

    Full text link
    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting edge tool for fully coherent X-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current as well as residual energy chirp from chicane compressor are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent X-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.Comment: 8 pages, 8 figure

    Design-Based Causal Inference with Missing Outcomes: Missingness Mechanisms, Imputation-Assisted Randomization Tests, and Covariate Adjustment

    Full text link
    Design-based causal inference is one of the most widely used frameworks for testing causal null hypotheses or inferring about causal parameters from experimental or observational data. The most significant merit of design-based causal inference is that its statistical validity only comes from the study design (e.g., randomization design) and does not require assuming any outcome-generating distributions or models. Although immune to model misspecification, design-based causal inference can still suffer from other data challenges, among which missingness in outcomes is a significant one. However, compared with model-based causal inference, outcome missingness in design-based causal inference is much less studied, largely due to the challenge that design-based causal inference does not assume any outcome distributions/models and, therefore, cannot directly adopt any existing model-based approaches for missing data. To fill this gap, we systematically study the missing outcomes problem in design-based causal inference. First, we use the potential outcomes framework to clarify the minimal assumption (concerning the outcome missingness mechanism) needed for conducting finite-population-exact randomization tests for the null effect (i.e., Fisher's sharp null) and that needed for constructing finite-population-exact confidence sets with missing outcomes. Second, we propose a general framework called ``imputation and re-imputation" for conducting finite-population-exact randomization tests in design-based causal studies with missing outcomes. Our framework can incorporate any existing outcome imputation algorithms and meanwhile guarantee finite-population-exact type-I error rate control. Third, we extend our framework to conduct covariate adjustment in an exact randomization test with missing outcomes and to construct finite-population-exact confidence sets with missing outcomes

    Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification

    Full text link
    Due to the modality gap between visible and infrared images with high visual ambiguity, learning \textbf{diverse} modality-shared semantic concepts for visible-infrared person re-identification (VI-ReID) remains a challenging problem. Body shape is one of the significant modality-shared cues for VI-ReID. To dig more diverse modality-shared cues, we expect that erasing body-shape-related semantic concepts in the learned features can force the ReID model to extract more and other modality-shared features for identification. To this end, we propose shape-erased feature learning paradigm that decorrelates modality-shared features in two orthogonal subspaces. Jointly learning shape-related feature in one subspace and shape-erased features in the orthogonal complement achieves a conditional mutual information maximization between shape-erased feature and identity discarding body shape information, thus enhancing the diversity of the learned representation explicitly. Extensive experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate the effectiveness of our method.Comment: CVPR 202
    • …
    corecore